Concealed g-tame algebras

Erlend Børve, Jacob Fjeld Grevstad, Endre Rundsveen arXiv:2407.17965 | Sacob.f.grevstad@ntnu.no

Main Theorem

Theorem A concealed algebra is **g**-tame if and only if it is tame.

wild	tame	finite
	Concealed	
	o-tame	au-tilting finite

Concealed algebras

Definition (Concealed algebra) An algebra *B* is *concealed* of type *Q* if $B = \text{End}_{kQ}(T)$ for a postprojective tilting *kQ*-module *T*.

Theorem (Brenner–Butler) For a tilting kQ-module T, you have equivalences of categories

 $\operatorname{Hom}_{kQ}(T,-): \operatorname{Fac}_{kQ}T \longrightarrow \operatorname{Sub}_{B}DT$ $\operatorname{Ext}_{kQ}^{1}(T,-): \operatorname{Sub}_{kQ}\tau T \longrightarrow {}^{\perp}({}_{B}DT)$

where $B = \operatorname{End}_{kQ}(T)$.

g-vectors

Definition A pair (M, P) in mod $A \times \text{proj} A$ is called τ -rigid if

- $\blacktriangleright \operatorname{Hom}(\boldsymbol{M}, \tau \boldsymbol{M}) = 0$
- $\blacktriangleright \quad \mathsf{Hom}(\boldsymbol{P},\boldsymbol{M}) = 0$

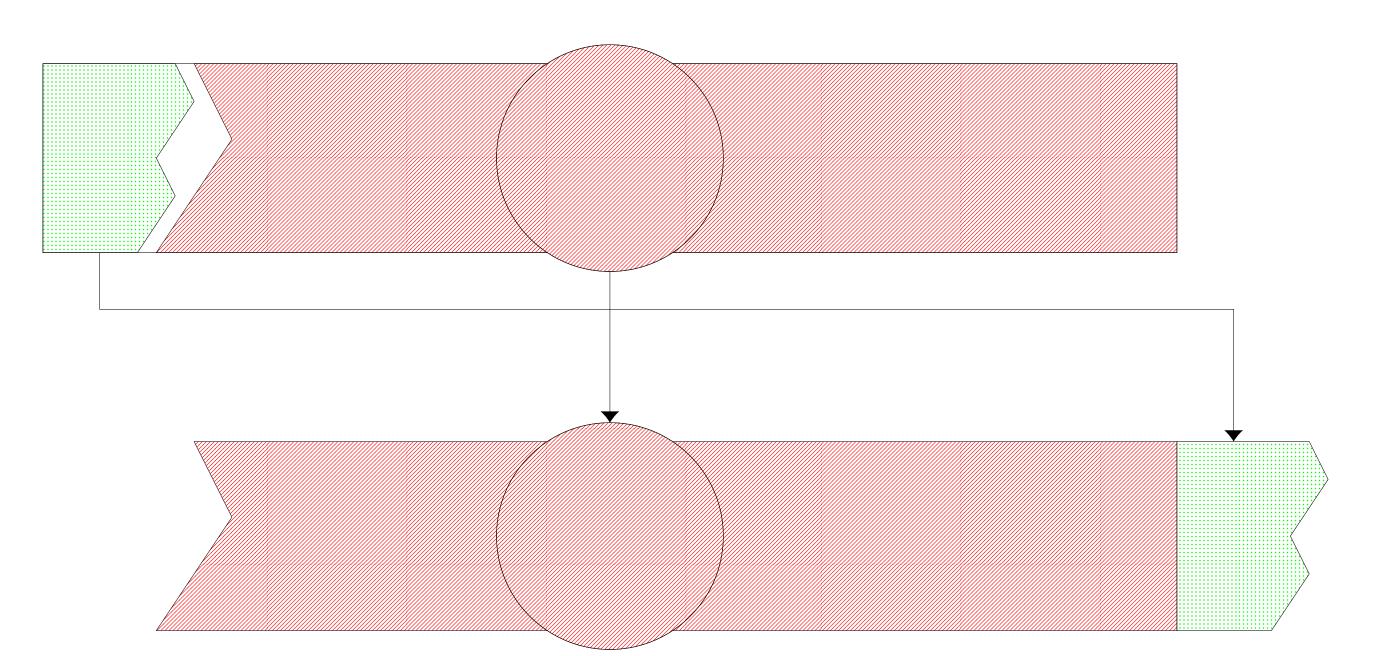
Definition If (M, P) is τ -rigid and $P_M^1 \rightarrow P_M^0$ is a minimal projective presentation of M, then

 $\mathbf{g}_{(\mathbf{M},\mathbf{P})} \coloneqq [\mathbf{P}_{\mathbf{M}}^{0}] - [\mathbf{P}_{\mathbf{M}}^{1}] - [\mathbf{P}] \in \mathbf{K}_{0}(\operatorname{proj} \mathbf{A})$

is the **g**-vector of (M, P).

Definition Decompose a τ -rigid pair $(M, P) = \bigoplus_i U_i$ into indecomposables U_i . Then

$$\boldsymbol{C}^{+}(\boldsymbol{M},\boldsymbol{P}) \coloneqq \left\{ \sum_{i} \boldsymbol{a}_{i} \, \boldsymbol{g}_{U_{i}} \mid \boldsymbol{a}_{i} > 0 \right\} \subseteq \boldsymbol{K}_{0}(\operatorname{proj} \boldsymbol{A}) \otimes \mathbb{R}$$



Hyperbolic algebras

Theorem For a quiver Q, the bilinear form on $K_0 \pmod{kQ}$ given by $q_Q([M]) = \dim \operatorname{Hom}_{kQ}(M, M) - \dim \operatorname{Ext}^1_{kQ}(M, M)$

only depends on the dimension vector of M.

Theorem Consider

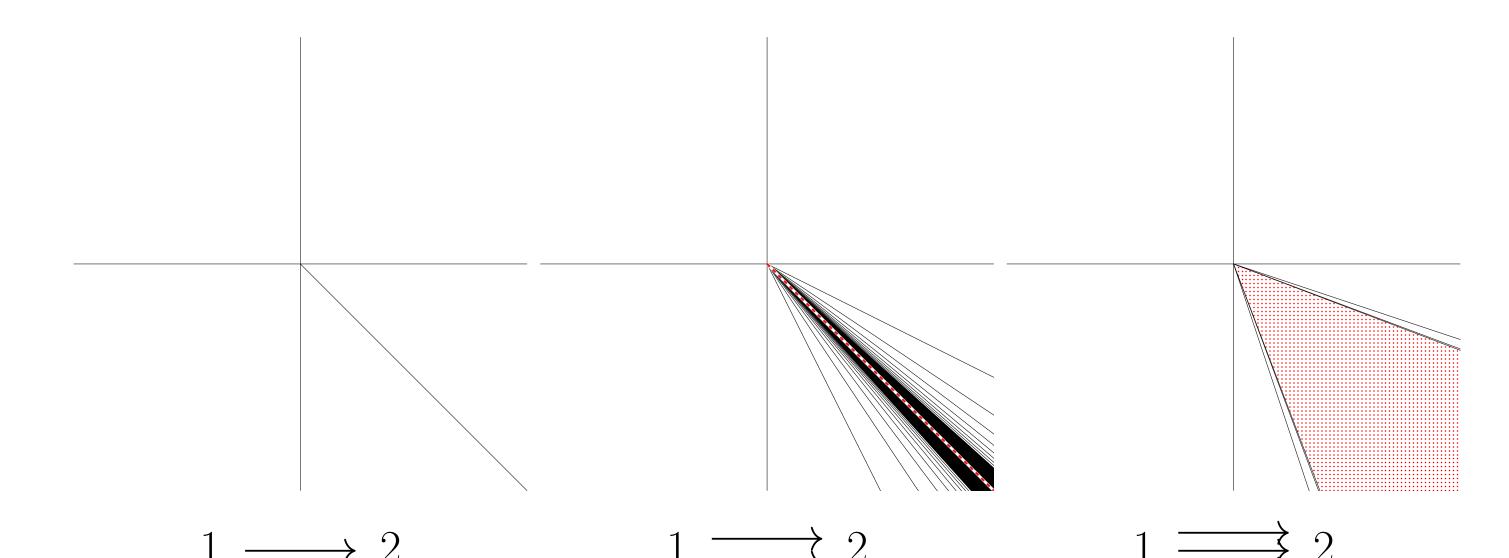
$$\mathbf{C}_{\mathbf{O}}^{<0} \coloneqq \{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} > 0, \ \mathbf{q}_{\mathbf{O}}(\mathbf{x}) < 0\}$$

is the cone associated to (M, P). The cones of all τ -rigid pairs together forms the **g**-vector fan of **A**.

τ -tilting type

Definition (Aoki–Yurikusa) An algebra *A* is called **g**-tame if its **g**-vector fan is dense in $K_0(\text{proj } A) \otimes \mathbb{R} \cong \mathbb{R}^n$.

Theorem (Asai) An algebra A is τ -tilting finite iff its **g**-vector fan covers all of $K_0(\text{proj } A) \otimes \mathbb{R} \cong \mathbb{R}^n$.



Then kQ is wild iff $C_{\Omega}^{<0}$ is nonempty.

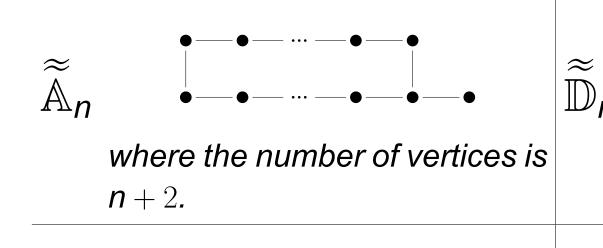
Definition A quiver Q is called *hyperbolic* if

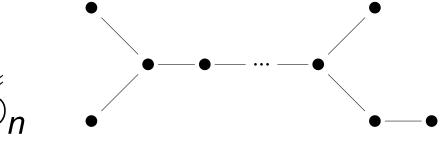
- The path algebra kQ is wild
- For any proper full subquiver Q', the path algebra kQ' is not wild

Theorem (BGR) Let Q be hyperbolic and B = End(T) be concealed of type Q. If $\theta \in C_Q^{<0}$ lies in a wall Θ_M , then the image of θ in $K_0(\text{proj } B)$ lies in the wall $\Theta_{\text{Hom}(T,M)}$.

Finite posets

Theorem (Leszczyński) A finite poset is wild if and only if its Galois cover contains a concealed algebra of one of the following types as a convex subalgebra.

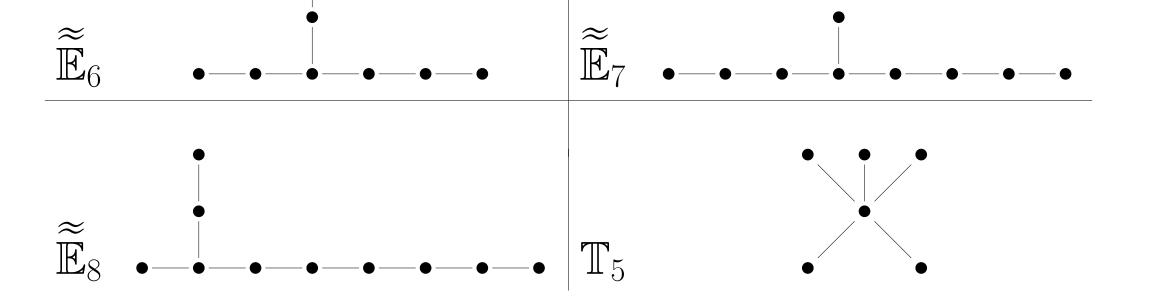




where $4 \le n \le 8$, and the number of vertices is n + 2.

Wall and Chambers

Definition Associated to a nonzero module *M*, we define a wall $\Theta_M := \{\theta \in K_0(\operatorname{proj} A) \otimes \mathbb{R} \mid \theta(M) = 0, \ \theta(X) \ge 0 \quad \forall X \in \operatorname{Fac} M\}$ **Theorem (Asai)** The walls are dense in the complement of the g-vector fan.



Corollary A simply connected poset is **g**-tame if and only if it is tame.

Department of Mathematical Sciences