Exact Precluster Tilting

Admissible modules

For a subcategory $\mathcal{M} \subseteq \mathcal{E}$ of an exact category we define $\mathsf{mod}_{\mathsf{adm}}(\mathcal{M}) \subseteq \mathsf{Mod}(\mathcal{M})$ as the category of functors with a presentation

$$\operatorname{Hom}_{\mathcal{E}}(-, M')\big|_{\mathcal{M}} \xrightarrow{f \circ -} \operatorname{Hom}_{\mathcal{E}}(-, M)\big|_{\mathcal{M}} \longrightarrow F \longrightarrow 0$$

such that $f: M' \to M$ is admissible in \mathcal{E} .

 $\mathsf{mod}_{\mathsf{adm}}(\mathcal{M})$ is an exact category

66

Morita-Tachikawa correspondence mod Λ \cong $\Omega^2 \mod \Gamma$ When *M* is a generator-cogenerator over Λ and $\Gamma = \operatorname{End}(M)$, then Hom_Λ(*M*, -) is an embedding which maps injectives to projective-injectives.

Correspondences for exact categories

Mapping a subcategory to its admissible module category gives a correspondence between functorially finite generating-cogenerating subcategories and certain exact categories. This generalizes several correspondences for algebras, as illustrated in the table below.

Module	Subcategory	Exact category	Algebra
Μ	\mathcal{M}	$mod_{adm}(\mathcal{M})$	$\Gamma := End(M)$
generator-cogenerator	functorially finite	enough projectives	
	generating-cogenerating	$({}^{\perp}\mathcal{P}, \operatorname{cogen}\mathcal{P})$ torsion pair	
		$X ightarrow {}^\perp \mathcal{P}$ has image in ${}^\perp \mathcal{P}$	domdim $\Gamma \geq 2$
		$Ext^1(^\perp \! \mathcal{P}, \mathcal{P}) = 0$	
<i>n</i> -rigid	<i>n</i> -rigid	$Ext^{< n+1}(^{\perp}\mathcal{P},\mathcal{P}) = 0$	domdim $\Gamma \ge n+1$
closed under τ_n and τ_n^-	relative inj.dim < n	$Ext^{>n+1}(-,\mathcal{P})=0$	inj. dim $_{\Gamma} \Gamma \leq n+1$
	relative cotilting	\mathcal{P} cotilting	Gorenstein
$M^{\perp n-1} = \operatorname{add} M = {}^{\perp n-1}M$	$\mathcal{M}^{\perp n-1} = \mathcal{M} = {}^{\perp n-1}\mathcal{M}$	$Ext^{>n+1}(-,-) = 0$	gl. dim $\Gamma \leq n+1$

arXiv:2207.05547 jacob.f.grevstad@ntnu.no

